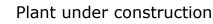

Investment in Waste Treatment – Project Implementation Steps

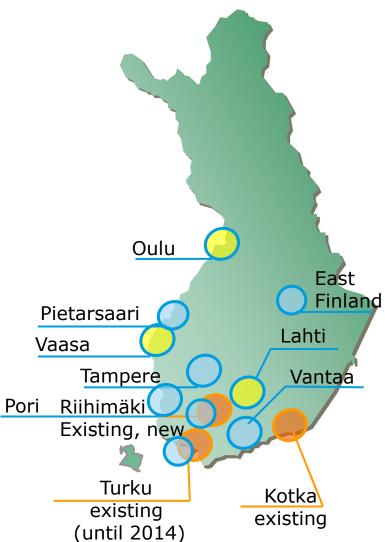
Wroclaw 23.5.2012 – REMOWE Workshop

• Jussi-Pekka Aittola

Jätteenpoltto käsittelyhierarkiassa – "EKOSYKLI" (Kuva: Jätelaitosyhdistys)

"STRUCTURE" OF ENERGY PRODUCTION: 2010 ->


	POWER PLANTS Electricity production only	ENERGY PRODUCTION - CHP in Industry and in Municipalities	WASTE TO ENERGY WTE PLANTS	RENEWABLE ENERGY SOURCES
Aim of the operation	Electricity (Power) Production	Energy Production, CHP	Waste Destruction,	Minimization of the Environmental Impact in Energy Production
		"Low calorific value Fuel" utilization	Energy production	
"Fuels"	Well defined, like Oil, Gas, Coal, Biomass, Peat	Coal, Bark, Peat, Wood, Stumps, Biogas, Sludge, Low Grade Biofuels, SRF, RDF, PDF, etc.	Mixed Waste, MSW, Demolition Wood, Low Grade Fuels	Solar, Wind, Wave, Hydro, etc
Operational Criteria	 Energy Efficiency MW_e, GWh/a Euro/MWh 	 Energy production, GWh/a MW_e, MW_t End Products t/a (ashes, etc.) Low Emissions 	 Destroying capacity, t/h, t/a Emissions End Products, t/a. Destroying Cost, Euro/t Energy Production, GWh/a 	 Investment cost, Euro/MWh Energy Efficiency Energy Production, GWh/a
Environmental/ Emission requirements	"Moderate"	"Some/Medium stipulated"	"Very Stringent"	"Some/Medium stipulated"
Risk of the operation	"Moderate"	"Medium"	"High"	"Medium/High"



WASTE to ENERGY in FINLAND. Market view

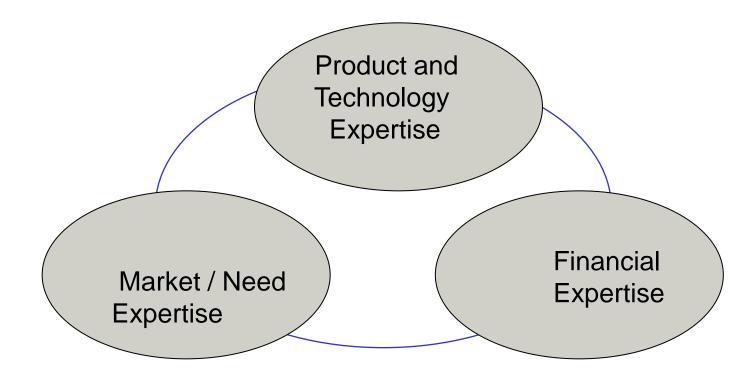
- Total amount of MSW:
 - 2,5 3,0 Mt/a
 - \rightarrow 55 % to landfill
 - \rightarrow 33 % to recycling
 - \rightarrow 12 % to energy
- Government target until 2016
 - Total waste to energy capacity would be 1 200 000 t/a
 - \rightarrow 4 5 new W to E plants, still
 - Planning phase or under investment discussion
 - Existing plant

"BAT - BREF"

BAT-requirements regarding emissions How to interpret them?

Where emission or consumption levels "associated with BAT" are presented this is to be understood as meaning that those levels represent the environmental performance that could be anticipated as a result of the application, in this sector, of the techniques described, **bearing in mind the balance of costs** and advantages inherent within the definition of BAT. **However, they are neither emission nor consumption limit values and should not be understood as such**. In some cases it may be technically possible to achieve better emission or consumption levels but due to the costs involved or cross-media considerations, they are not considered as BAT for the sector as a whole.

. . .


It is intended that the general BAT ... are a reference point against which to judge ... an existing installation or ... a proposal for a new installation.

STAKEHOLDERS AND DECISSION MAKING IN WASTE TREATMENT PROJECTS AND PROJECT INVESTMENTS

CORNERSTONES FOR INVESTMENT

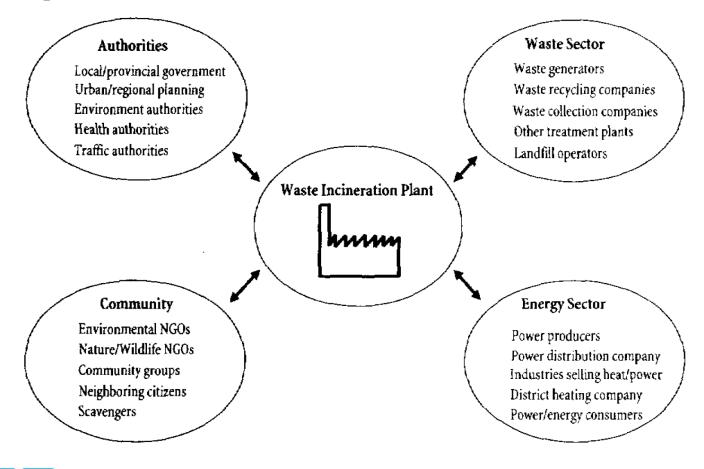
WASTE MANAGEMENT DRIVERS – TREATMENT TECHNOLOGY DEVELOPMENT

1. International Regulations, Trends and Drivers

- EU 20/20/20 target, EU Directives & Guidelines,
- Joint Implementation, CDM, GEF, Kyoto protocol
- Emission Trading years 2008 2012 (after 2012 ??)
- Climate Change Discussion and actions

2. National Goals & Targets & Drivers

- Policy issues (Environmental Regulation)
- Energy & Climate policy issues (fuels, emissions, etc.)
- Economic and other incentives, sanctions,


3. Country Specific Laws & Regulations – Driving Forces

- Energy & Climate Programs, forecasts.
- EU 20/20/20 target & local response, energy production & technology tradition
- Emission trading
- New Market Mechanisms

INVESTMENT RELEVANT STAKEHOLDERS (WORLD BANK TECHNICAL PAPER NO. 462, JUNE 200)

Figure 1 Relevant Stakeholders

RAMBOLL

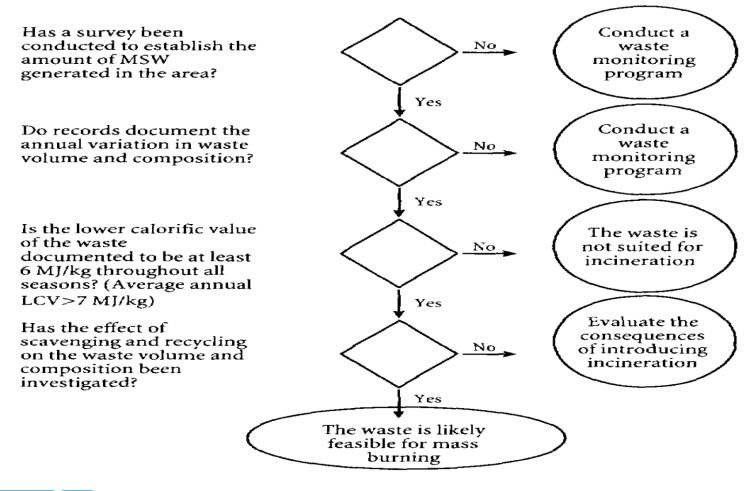
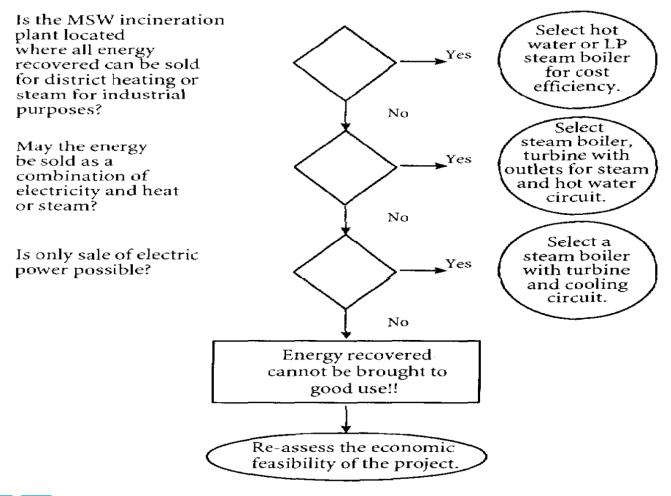

PROJECT IMPLEMENTATION PLAN AND STEPS

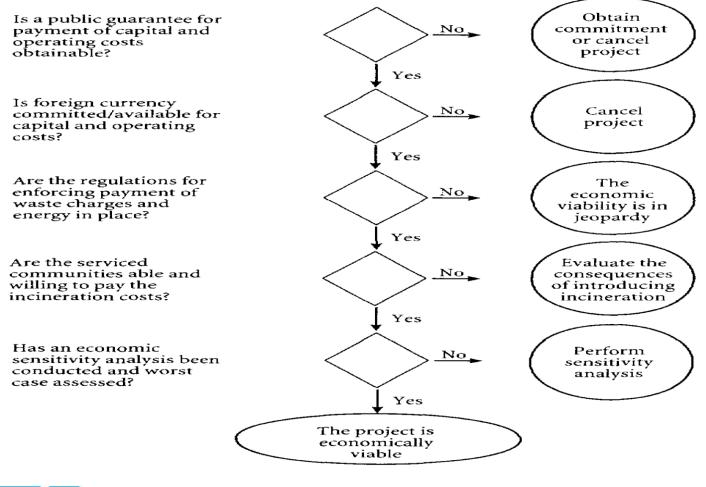
Figure 11 Typical Implementation Plan

Phase and Step		Purpose and Issues to Consider	Duration	
Feasibility Phase	Pre-feasibility Study	Waste quantities, calorific values, capacity, siting, energy sale, organization, costs, and financing	6 months	
	Political Decision	Decide whether to investigate further or to abort the project	3 months	
	Feasibility Study	Waste quantities, calorific values, capacity, siting, energy sale, organization, costs, and financing in detail	6 months	
	Political Decision	Decide on willingness, priority, and financing of incineration plant and necessary organizations	6 months	
Project Preparation Phase	Establishment of an Organization	Establishment of an official organization and an institutional support and framework	6 months	
1 1 1 1 2 2	Tender and Financial Engineering	Detailed financial engineering, negotiation of loans or other means of financing, and selection of consultants	3 months	
	Preparation of Tender Documents	Reassessment of project, specifications, prequalification of contractors, and tender documents	6 months	
	Political Decision	Decision on financial package, tender documents and procedures in detail, and final go-ahead	3 months	
Project Implementation Phase	Award of Contract and Negotiations	Prequalify contractors, tender documents, select most competitive bid, negotiate contract	6 months	
	Construction and Supervision	Construction by selected contractor and supervision by independent consultant	$2 1/_2$ years	
	Commissioning and Startup	Test all performance specifications, settlements, commissioning, training of staff, and startup by constructor	6 months	
	Operation and Maintenance	Continuous operation and maintenance of plant. Continuous procurement of spare parts and supplies.	10-20 years	

ASSESSMENT OF WASTE AS FUEL

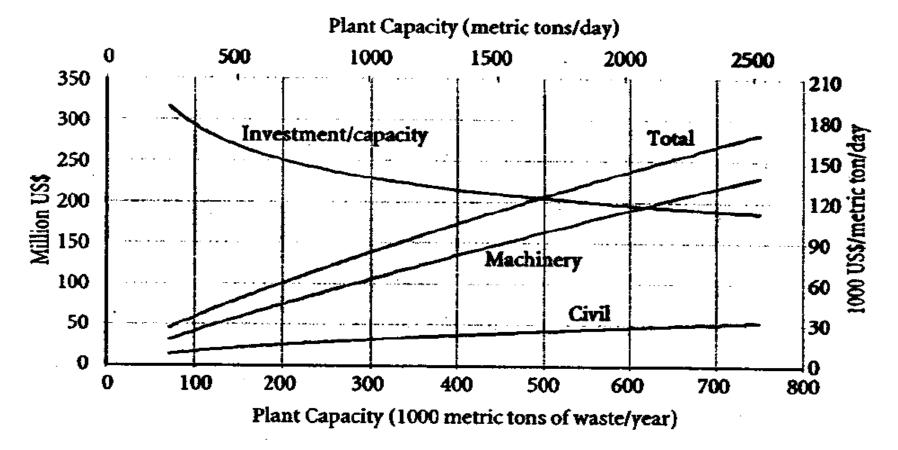

Figure 4 Assessment of Waste as Fuel

POTENTIAL SALE OF ENERGY


Figure 3 Assessment of Potential Sale of Energy

PROJECT "GO or NOGO" - DECISSION

Figure 10 Assessment of Project Economy



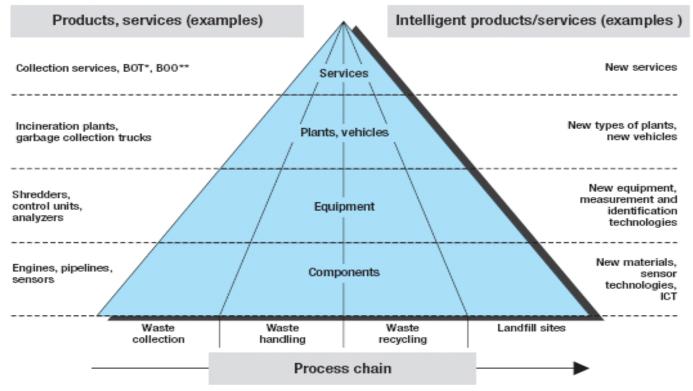
Jussi-Pekka Aittola

INVESTMENT COSTS - WASTE TO ENERGY (WORLD BANK TECHNICAL PAPER NO. 462, JUNE 2000)

Figure 4.1 Investment Costs

WASTE TO ENERGY PLANTS IN FINLAND 2010 -> IN OPERATION & "ON DRAWING BOARD"

	Location	Design (Fu	esign (Fuel) Fuel		Boiler		Consulting	Commissioning	Cost
		Capacity, t	/a Type	Supplier	-	Тур	Company	Year	M Euro
Оре	erating W to	E Plants							
1	Turku	50 000	MSW	Von Roll	/ Volund	"EPCM"	IVO Group	1975/1995	NA
							RFI	until 2014	
2	Kotka	100 000	MSW	Seghers-	Keppel	EPCM	ÅF - Enprima	2007	65
3	Ekokem 1	130 000	MSW + RSF	Fisia-Bab	cock	EPCM	ÅF - Poyry	2007	55 - 65
Wt	o E plants u	inder constru	iction or "on draw	ing board"					
4	Vaasa	160 000	MSW	AEE Von	Roll	EPCM	RDk-CITEC	2013	120 - 135
5	Oulu	130 000	MSW	Baumgar	te Boiler Systems Gmbl	H OE	ÅF	2013	80
				Standard	lkessel Baumgarte Groι	ір			
6	Ekokem 2	150 000	MSW + RSF	?		EPCM	ÅF	2013(4)	85 - 100
7	Vantaa	320 000	MSW	?	ext. Superheating	EPCM	Poyry	2014	200 - 220
					using nat. gas				
8	Lahti	250 000	MSW+RSF	M-Power	•	EPCM / OE	??	2012	160
9	Pirkanmaa	150 000	MSW	?		?	?	2014	100 - 120
12	Pietarsaari	130 000	RSF	?		?	?	2014	80
10	Pori	150 000	MSW	?		?	?	2015	?
11	SW-Finland	150 000	MSW + RSF	?		?	?	2016	?
	In Total	1,87	M t/a						

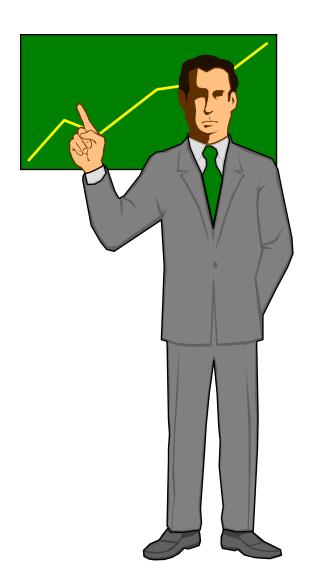

MARKET DRIVERS in Waste Treament. W2E as an Example

- EU waste directives
- IED year 2016
- Landfill ban (2016)
- Energy recovery waste recycling
 - EU Waste hierarchy
- Landfill volume savings
 - Volume reduction > 85%
 - Mass reduction > 75%
- Safe & hygienic end product
 - Disease vector removal

WASTE TREATMENT HIERARCHY AND PROCESS CHAIN

* BOT - build, operate, transfer **BOO - build, own, operate

Figure 1.1. Waste treatment: Hierarchy and process chain.



Nordförbränning, Copenhagen, Denmark

Thank You

Jussi-Pekka Aittola

Ultranat Oy Asmalammenkuja 8 40420Jyväskylä

jussi-pekka.aittola@ultranat.fi GSM +358 40 739 8696

